Kanser Teşhisi için Makine Öğrenmesi Tekniklerine Dayalı Yeni Bir Sınıflandırma Metodu

İnsan ölümlerinin en büyük nedenlerinden biri kanserdir. Kadınlar arasındaki kanser ölümlerinin başlıca sebebi ise meme kanseridir. Bu kanser türü sebebiyle yaşanan ölümleri azaltmanın yolu erken teşhistir. Uzman sistemler, yapay zeka ve makine öğrenmesi tekniklerinin tıp alanında kullanılmasının temel amaçlarından biri hastalıkları erken teşhis etmede doktorlara yardımcı olmaktır. Kanser türleri arasında özellikle meme kanserinde erken teşhis sayesinde ölüm riski büyük oranda düşürülebilir. Bu çalışmada temel bileşen analizi (Principal Component Analysis-PCA) ve ileri beslemeli sinir ağı (Feed Forward Neural Network-FFNN) temelli yeni bir kanser teşhisi yöntemi önerilmiştir. Önerilen yöntemin performansı Meme Kanseri Coimbra Veri Seti (Breast Cancer Coimbra Dataset-BCCD) üzerinde sınıflandırma doğruluğu, kesinlik, duyarlılık ve F-ölçütü metrikleri ile test edilmiştir. Ayrıca önerilen yöntemin klasik makine öğrenmesi teknikleri ve literatürdeki çalışmalar ile ayrıntılı olarak karşılaştırmalı performans analizi yapılmıştır. Deneysel sonuçlar önerilen yöntemin etkin olduğunu ve erken teşhis için doktorlar tarafından kullanılabileceğini göstermektedir.


Can EYÜPOĞLU , Erdem YAVUZ

Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi
,
Yıl 2020
Cilt 7
Sayı 2

Dergi adı:Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi

https://dergipark.org.tr/tr/pub/bseufbd/issue/56632/742456

Author: admin